Charge distribution induced inside complex plasmonic nanoparticles
نویسندگان
چکیده
منابع مشابه
Charge distribution induced inside complex plasmonic nanoparticles.
We developed a versatile numerical technique to compute the three-dimensional charge distribution inside plasmonic nanoparticles. This method can be easily applied to investigate the charge distribution inside arbitrarily complex plasmonic nanostructures and to identify the nature of the multipolar plasmon modes involved at plasmonic resonances. Its ability to unravel the physical origin of pla...
متن کاملRetardation-induced plasmonic blinking in coupled nanoparticles.
We study how retardation leads to interference effects in radiatively coupled plasmonic nanoparticles. We show that inclined illumination through a glass substrate on two plasmonic particles results in either an enhanced field or an attenuated field localized at the position of the first particle. Periodic intensity blinking of the first particle is observed as a function of the particle separa...
متن کاملElectromagnetic forces on plasmonic nanoparticles induced by fast electron beams
The total momentum transfer from fast electron beams, like those employed in scanning transmission electron microscopy STEM , to plasmonic nanoparticles is calculated. The momentum transfer is obtained by integrating the electromagnetic forces acting on the particles over time. Numerical results for single and dimer metallic nanoparticles are presented, for sizes ranging between 2 and 80 nm. We...
متن کاملCharge distribution and Fermi level in bimetallic nanoparticles.
Upon metal-metal contact, a transfer of electrons will occur between the metals until the Fermi levels in both phases are equal, resulting in a net charge difference across the metal-metal interface. Here, we have examined this contact electrification in bimetallic model systems composed of mixed Au-Ag nanoparticles containing ca. 600 atoms using density functional theory calculations. We prese...
متن کاملPlasmonic Nanoparticles for Optofluidic Applications
This thesis discusses the application of colloidal particles to optofluidic systems. Colloidal particles can be added as a “dopant” to the liquids in these devices to provide functionality that cannot be obtained with homogenous fluids. We examine electrooptic effects in liquid suspensions asymmetric metallic nanoparticles. The theoretical optical properties of gold nanorods and noble metal nan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2010
ISSN: 1094-4087
DOI: 10.1364/oe.18.003035